信用评分算法:
GBDT(Gradient Boosting Decision Tree)又叫MART(Multiple Additive Regression Tree),该模型不像决策树模型那样仅由一棵决策树构成,而是由多棵决策树构成,通常都是上百棵树,而且每棵树规模都较小(即树的深度会比较浅)。模型预测的时候,对于输入的一个样本实例,首先会赋予一个初值,然后会遍历每一棵决策树,每棵树都会对预测值进行调整修正,最后得到预测的结果。
F(x)=F_0+β_1 T_1 (x)+β_2 T_2 (x)+⋯+β_m T_m (x)
其中,F_0为设置的初值,T_i是一棵棵的决策树(弱的分类器)。
GBDT作为一种boosting算法,自然包含了boosting的思想,即将一系列弱分类器组合起来构成一个强分类器。它不要求每个分类器都学到太多的东西,只要求每个分类器都学一点点知识,然后将这些学到的知识累加起来构成一个强大的模型。